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Abstract

For self-consistent ion-beam simulations including electron motion, it is desirable to be able to follow electron dynamics accurately

without being constrained by the electron cyclotron timescale. To this end, we have developed a particle-advance that interpolates

between full particle dynamics and drift motion. By making a proper choice of interpolation parameter, simulation particles experience

physically correct parallel dynamics, drift motion, and gyroradius when the timestep is large compared to the cyclotron period, though

the effective gyrofrequency is artificially low; in the opposite timestep limit, the method approaches a conventional Boris particle push.

By combining this scheme with a Poisson solver that includes an interpolated form of the polarization drift in the dielectric response, the

mover’s utility can be extended to higher-density problems where the plasma frequency of the species being advanced exceeds its

cyclotron frequency. We describe a series of tests of the mover and its application to simulation of electron clouds in heavy-ion

accelerators.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For simulations of ion beams in magnetically focussed
accelerators which self-consistently include the effects of
electron clouds, it is necessary to follow electrons through
regions in which they are strongly magnetized (cyclotron
frequency oce large compared to other inverse timescales of
interest) as well as regions where they are unmagnetized. It
is desirable to have a simulation approach that is not
constrained by the electron cyclotron timescale.

There are numerous other examples of systems in which
particles transit regions of strong and weak magnetic field,
yet the cyclotron motion itself is not of particular interest.
These include field-reversed configurations for magnetic
fusion, reconnecting plasmas with field nulls, and systems
with self-generated strong localized magnetic fields.
e front matter r 2007 Elsevier B.V. All rights reserved.
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To address this issue, we have developed a ‘‘blended
particle mover’’ that interpolates between full particle
dynamics and drift-kinetic dynamics. This mover was
described briefly, and some tests presented, in a previous
publication [1]. In this paper we describe the mover in more
detail, present additional test results, and also describe an
extension to the original prescription that allows extension
to some higher-density systems with plasma frequency op

exceeding the gyrofrequency (along with a test of the new
capability).
We note that, in addition to the original motivating

applications, which can be generically described as
problems with strongly varying magnetization, the blended
mover concept may provide an attractive alternative to
gyrokinetics for simulating magnetized plasmas.

2. Blended mover

The blended mover concept [1] builds upon the obser-
vation by Parker and Birdsall [2] that the conventional
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Boris mover for particles in a magnetic field, when directly
applied with timesteps Dt large compared to the inverse
cyclotron frequency o�1c , recovers physically correct
electric and magnetic drifts, at least for test problems
where these drifts are uniform, but with two drawbacks:
(1) the particles oscillate about their gyrocenter with an
effective ‘‘gyroradius’’ that is larger than the physical
gyroradius by a factor of ½1þ ðocDt=2Þ2�1=2 and (2) the
particles oscillate by nearly p in gyrophase each timestep,
with a slow precession period that is OðocDt2Þ. For
simulation of phenomena with frequencies well below the
cyclotron frequency, the first difficulty can be overcome by
using an interpolated velocity to advance particle positions.
The instantaneous velocity vL is updated according to

vL;new ¼ vL;old þ ½ðDvÞLorentz þ ð1� aÞðDvÞmrB� (1)

where the first term on the right-hand side is the standard
Boris update for the full velocity, and the second term is a
mirror-force correction term which is discussed and defined
below. The particle position is updated using an effective

velocity which is an interpolation of this updated
instantaneous velocity and the drift velocity vd; specifically,
xnþ1 ¼ xn þ v

nþ1=2
eff Dt, with

veff ¼ bðb � vLÞ þ avL;? þ ð1� aÞvd (2)

and vd is the sum of the particle E� B, rB, and curvature
drifts. The logic behind the blended scheme is that adding a
fraction a of the oscillating perpendicular (to B) velocity to
the position advance will result in an oscillation about the
field line that is reduced by a factor a. From the expression
above for the effective gyroradius of the Boris mover, it
follows that the choice a ¼ 1=½1þ ðocDt=2Þ2�1=2 produces
the physically correct gyroradius. Furthermore, for any
choice of a, since the Boris mover reproduces correct
parallel dynamics and particle drifts, at least for the simple
cases considered by Parker and Birdsall, and, by construc-
tion, so does drift kinetics, the interpolation given in
Eq. (2) will as well. In fact it can be expected to do better
than either pure Boris or drift kinetics for cases where there
is significant nonlinear variation of the local particle drift
on the scale of the gyroradius, as the blended scheme will
average the drifts over the proper gyroradius.

The magnetic-mirror force mrB arises from the local
convergence or divergence of field lines. It is properly
calculated in a full orbit dynamics calculation, but needs to
be explicitly added to the parallel dynamics in the drift
limit. Hence it appears multiplied by the complement of the
interpolation function in Eq. (1). Since it is a magnetic
force it conserves energy, and so can be represented as a
rotation of the velocity vL in the plane defined by vL and
the magnetic field, by an (assumed small) amount Dy ¼
ðmm=2B3Þ

1=2DtB � rB where m � mv2?=2B.
This algorithm was implemented into the explicit

electrostatic code WARP [3], utilizing a simple predictor–
corrector scheme for particle advance only: to advance
from time level n, Eq. (1) is advanced from level n� 1

2
to

nþ 1
2
using fields at time level n, and, in the evaluation of
ðDvÞmrB, the old particle velocities. The position is
advanced uncentered from time level n to nþ 1 and the
average of this predicted position and the position at level n

is used to construct effective drift velocities at level nþ 1
2.

3. Test problems

The mover described above has been subjected to a
number of tests of increasing complexity. First, single-
particle electron orbits were calculated in a quadrupole
magnetic field, with a superimposed stationary positive
charge distribution (mocking up the effect of an ion beam).
Orbits that pass too close to the field null in such a system
experience chaotic, nonadiabatic changes in magnetic
moment. A range of initial conditions were chosen to
obtain orbits that were adiabatic, marginally nonadiabatic,
and strongly nonadiabatic, and the axial positions versus
time plotted, as shown in Fig. 1. This was done for a large-
timestep simulation ðoc;maxDt ¼ 5pÞ and a small-timestep
simulation which resolves the maximum cyclotron fre-
quency ðoc;maxDt ¼ 0:2pÞ. The steps in orbits (i)–(iv) occur
as electrons pass close to the field null and experience a
large magnetic curvature drift; their spacing is an indica-
tion of the bounce time. Adiabatic orbit (v), and marginally
nonadiabatic orbits (i) and (ii), agree very well; orbits (iii)
and (iv) are chaotic, as evidenced by the variability in
bounce time, and hence agreement is not expected (except
that both small and large-timestep simulations exhibit the
chaotic behavior, and a very small change in the initial
conditions produces a significantly different result).
A second test is the calculation of a two-stream

instability for two colliding finite-size (10 gyroradius)
anisotropic ðT?bTkÞ proton beams. We compare results
from simulations at small timestep ðocDt ¼ 0:6Þ, large
timestep ðocDt ¼ 12Þ using the blended mover, and large
timestep using the pure Boris mover. This test was reported
in Ref. [1], though we have since discovered that the code at
the time had an inconsistent boundary condition. Correct-
ing that produces quantitative but not qualitative changes.
In Fig. 2 we show the time evolution for the corrected
simulation, with the results for the blended mover slightly
shifted horizontally to subtract out the difference in the
effective noise seed in the large-timestep simulation. The
results clearly illustrate that the blended mover recovers
the correct linear growth and even closely tracks details of
the early evolution of the saturated state. To illustrate the
importance of the finite beam radius, a comparison case
with a double-radius beam is also shown (gray curve).
A third test, also discussed in Ref. [1] is the calculation of

electron cloud dynamics for a self-consistent simulation
which includes both an ion beam and electrons. This is a
simulation of an experiment done in the High Current
Experiment (HCX) facility [4], in which an ion beam which
has passed through is series of quadrupole magnets and a
magnetic-field-free end region is allowed to impact an end
plate which emits a copious supply of electrons. Shown in
Fig. 3, taken from Ref. [1], is a plot of the electron
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Fig. 1. Single-particle orbits in quadrupole field with (a) oc;maxDt ¼ 5p
and (b) oc;maxDt ¼ 0:2p. Particles were initialized at azimuthal angles

y ¼ (i) 40�, (ii) 50�, (iii) 43�, (iv) 47�, and (v) 70�. The quadrupole is

oriented so that the principal axes are at y ¼ 45� and 135�.
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Fig. 2. Growth rate for two stream instability of finite-size beams. Black

curve (1) is 10-gyroradius beam using small timesteps; red (2) is same beam

using large timesteps and blended mover; blue (3) is same beam using large

timesteps and pure Boris mover; gray curve (4) is 20-gyroradius beam

using large timesteps and blended mover. (Figure in color online.)
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distribution in the final quadrupole magnet and field-free
region for the blended mover at large timestep and a
comparison run with small timesteps. The blended mover
does a good job of reproducing the electron distribution
calculated with small timesteps, including capturing the
spatial oscillations which appear. These oscillations pro-
pagate upstream (relative to the ion beam propagation)
with the drifting majority electron population, and hence
would appear as temporal oscillations on a stationary
probe. Not shown in Fig. 3 is a simulation done with the
pure Boris mover and the large timestep, which is
qualitatively different, in particular missing most of the
oscillation.

A fourth test, to be described in detail elsewhere [5],
entails the calculation of the spatial distribution of
positrons in a Penning–Malmberg trap with an added
mirror coil, using the blended mover. The results agree well
with predictions of an analytic model.
Validation tests of the simulation capability, including
the blended mover, have been done by comparing
experimental signals from the HCX experiment with
synthetic diagnostics in the WARP code. In particular
the electron current collected on a biased electrode
upstream of the last quadrupole magnet has been measured
and also simulated; the results are shown in Fig. 4. It is seen
that the simulation reproduces the magnitude and char-
acteristic frequency range of the experiment.

4. High-density extension

The blended mover implementation described above is
limited to problems where the species to which it is applied
is low density, as characterized by the plasma frequency
being less than the cyclotron frequency. The mover is of
benefit only if it allows timesteps larger than the cyclotron
period, but the existing explicit implementation limits the
timestep to be at most of order of the inverse of the plasma
frequency op.
We have taken two steps to remove these restrictions: (1)

incorporation of the polarization drift as an additional
term in the Poisson equation; this term becomes an order
unity correction when op�oc and (2) implementation
of a centered predictor–corrector scheme that includes a
field solve at the end of the predictor step. With these
changes we can address high-density problems where
geometrical constraints preclude formation of a simple
one-dimensional (along B) plasma wave. The inclusion
of polarization in the Poisson equation, coupled with
the modified predictor–corrector scheme, introduces a
degree of implicitness sufficient to allow solution of such
problems.
The generalized Poisson equation follows from a

determination of the charge density perturbation produced
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Fig. 3. Electrons in self-consistent electron–ion simulation of fourth

magnet of HCX, using (a) the blended mover and large timesteps,

ocDt 	 2p, and (b) the Boris mover with small timesteps, ocDt 	 2p=10.
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Fig. 4. Comparison of collected current on electrode in HCX experiment

and signal synthesized from WARP simulation.
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by the polarization drift [6], and can be written in the form

r2fþ
X

s

r?ðo2
ps=o

2
csÞr?f ¼ 4peðni � neÞ (3)

where r? ¼ r� bb � r is the gradient perpendicular to the
magnetic field and ne and ni are the electron and ion
densities calculated without inclusion of the polarization
drift, and where the sum s runs over species. The second
term on the left is the polarization response. Since the
polarization drift is intrinsically included in the direct Boris
particle advance and so in the density calculated from the
direct particle advance, for the blended mover the above
equation must be corrected. The density on the right-hand
side of a species pushed with the blended mover will
contain a fraction a of the polarization density, corre-
sponding to the fraction of the Boris move used in the
particle advance for species s. Hence the polarization
response for species s should be multiplied by ð1� asÞ, and
the appropriate form of the Poisson equation becomes

r2fþ
X

s

ð1� asÞr?ðo2
ps=o

2
csÞr?f ¼ 4peðne � niÞ (4)

where the sum runs only over species for which the blended
mover is used.
The other change is the implementation of a centered

predictor–corrector scheme. To advance from time level n

to nþ 1, we advance Eq. (1) from n� 1
2 to nþ 1

2 as in
Section 2, and then advance particle positions from time
level n� 1 to nþ 1 using the effective velocity from Eq. (2),
with field quantities evaluated at time level n, and
instantaneous velocities vL averaged over levels n� 1

2
and

nþ 1
2
. A field solve is then performed for particles at the

predicted positions. A corrector step is then taken from
step n to nþ 1, using v

nþ1=2
L and the average of the drift

velocities at level n and those calculated from the predicted
particle locations and fields. The corrector step can be
repeated multiple times if needed.
As a test problem we consider a simple plasma

instability, the slab ion temperature gradient instability in
two dimensions [7]. This instability occurs in a plasma with
a uniform magnetic field provided that Zi, the logarithmic
temperature gradient divided by the logarithmic density
gradient, exceeds a critical value. This instability was
calculated using gyrokinetics by Lee and Tang [7]. Lee and
Tang developed a multiscale approach [8] to including the
temperature and density gradient drive terms that allowed
them to perform simulations with a uniform plasma in a
doubly periodic box; specifically they add to the particle
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drifts a fake compressible term

Dv ¼ ðkn � ð3=2� v2=v2thÞkT Þex � B=B (5)

where kn ¼ �ð1=nÞdn=dx and kT ¼ �ð1=TÞdT=dx to the
velocities used to advance the particles. We apply the same
approach here, adding it to veff . We test here application of
our mover to ion dynamics, with the electrons treated by
an adiabatic approximation, ne ¼ n̂ expðef=TÞ, with n̂ a
constant on a field line, which we choose to be
n0=hexpðef=TÞi where n0 is the initial (constant) density
and hi denotes a field-line average. This is a nonlinear
extension of a linear model commonly used for gyrokinetic
simulation, which preserves the number of electrons on a
field line.

We have run the specific problem described in Ref. [7]: a
two-dimensional slab x; z, with the magnetic field in the y; z
plane and Bz=By ¼ 0:01, with cell size ¼ gyroradius, kn ¼

0:05 or 0, kTi ¼ 0:2, opi=oci ¼ ðmi=meÞ
1=2. We run with the

blended mover with ociDt ¼ 5:43. Two iterations of the
corrector are required for numerical stability (as deter-
mined by running a problem with the drive term (5) turned
off). To reduce noise we follow the common practice of
smoothing the charge density (with a 1–2–1 filter) prior to
solving Poisson’s equation. The resulting potential solution
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Fig. 5. Growth of the potential for the slab ion-temperature gradient

mode, for the (1,1) Fourier component, obtained with adiabatic electrons

and using (a) the blended mover, and (b) the standard Boris mover with a

smaller timestep ðociDt ¼ 0:25Þ.
is Fourier-analyzed in the two spatial dimensions. The time
history of the resultant dominant nx ¼ nz ¼ 1 mode is
plotted in Fig. 5 for kn ¼ 0. The plots show linear growth
followed by saturation at levels comparable to those shown
in Ref. [7] and those found with other gyrokinetic codes [9].
The oscillations in the saturated phase are comparable in
their period to those observed by Lee and Tang. We infer a
linear growth rate from fitting this data and dividing by
two to get the growth rate for f itself, of approximately
0:004oci, which is about 30% more than the simulation
result obtained by Lee and Tang, but still less than the
fluid-based analytic result which Lee and Tang use as a
basis for comparison. We have also analyzed the nx ¼ 1;
nz ¼ �1 mode; it has a similar growth rate and saturation
level. We have also run the model with other choices for n̂,
namely n̂ ¼ n0 and n̂ ¼ hnii=hexpðef=TÞi,and the results
are similar.
In the test problems reported in Section 3, blended

mover results were compared with those using the Boris
mover at both small and large timesteps. We show the
comparison with a small-timestep run ðociDt ¼ 0:25Þ in
Fig. 5b; the result is sufficiently noisier than the blended
mover that it is impossible to obtain a clean estimate of the
linear growth rate, but it and the saturation level can be
seen to be roughly comparable to that for the large-
timestep blended mover. The Boris mover run at the large
timestep described above is unstable (large potentials grow
even in the absence of gradients).

5. Discussion

The blended mover described here allows simulation of
particles in strongly inhomogeneous magnetic fields with-
out being constrained by the maximum cyclotron fre-
quency. It is quite successful in reproducing results from
simulations that resolve the cyclotron motion, but with a
much larger timestep. It reproduces single-particle drifts
and parallel dynamics quite well, even to the extent of
correctly distinguishing chaotic and nonchaotic orbits near
the null of a quadrupole field (reproducing the trajectory
for nonchaotic orbits). It allows us to recover results for an
electron collective oscillation that reproduce results from
both short-timescale simulation and from experimental
data. This mover is now in routine use in the WARP
particle code.
The modified implementation of the mover discussed in

Section 4 was introduced to allow application to higher-
density problems where op4oc. Our tests indicate that it
in fact does that. Success depended on inclusion of the
polarization term in the Poisson equation, which operates
only on variations perpendicular to the magnetic field.
Removal of this restriction requires a fully implicit
implementation, which we plan to do. Particularly with
these high-density extensions, the mover is a potential
alternative to gyrokinetics for simulating kinetic phenom-
ena in strong magnetic fields while retaining finite
gyroradius effects.
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